A Survey on Feature Selection Methods for Imbalanced Datasets

نویسندگان

  • Hemlata Pant
  • Reena Srivastava
چکیده

Class imbalance problem is one of the greatest challenges in machine learning and data mining researches, which has acquired significant research interest from academics, industries and research teams in recent years. Researchers have proposed many techniques to handle the class imbalance problem, including resampling, new algorithms, and feature selection. The class imbalance problem is even more severe when the dimensionality is high. Both sampling techniques and algorithmic methods may not work well for high dimensional class imbalance problems. Feature or variable selection is a preprocessing technique commonly used for high-dimensional data. The key issue in the feature selection is finding the highly relevant features in the feature sets that allow a classifier to reach optimal performance. This paper presents a survey on feature selection methods for imbalanced datasets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts

High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...

متن کامل

Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

Objective(s): This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. Materials and Methods: To evaluate effectiveness of proposed feature selection method, we ...

متن کامل

Evaluation of Classifiers in Software Fault-Proneness Prediction

Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

Ensemble-Based Wrapper Methods for Feature Selection and Class Imbalance Learning

The wrapper feature selection approach is useful in identifying informative feature subsets from high-dimensional datasets. Typically, an inductive algorithm “wrapped” in a search algorithm is used to evaluate the merit of the selected features. However, significant bias may be introduced when dealing with highly imbalanced dataset. That is, the selected features may favour one class while bein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015